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ABSTRACT 

 

 Structural health monitoring has emerged as an important branch of civil engineering in recent 

times, with the need to automatically monitor structural performance over time to ensure structural 

integrity. More recently, the advent of smart sensing materials has given this field a major boost. 

Research has shown that smart sensing materials fabricated with conductive filler at a concentration 

close to the percolation threshold results in high sensitivity to strain due to the piezoresistive effect. 

Of particular interest to this research are cementitious sensors fabricated using carbon black fillers. 

Carbon black is considered because of its widespread availability and low cost over other 

conductive fillers such as carbon nanotubes and carbon nanofibers. A challenge in the fabrication 

of these sensors is that cementitious materials require a significant amount of carbon black to 

percolate, resulting in a loss in mechanical properties. This research investigates a new method to 

accelerate percolation of the materials, enabling cementitious sensors with fewer carbon black 

particles. A carbon black-based conductive paint that allows earlier percolation by facilitating 

conducting networks in cementitious sensors is used. The conductive paint consists of a block 

copolymer, SEBS (styrene-co-ethylene-co-butylene-co-styrene), filled with carbon black particles. 

The percolation thresholds of sensors fabricated both with and without conductive paint are, as well 

as their strain sensing characteristics and compressive strength. The study found that SEBS could 

successfully reduce the percolation threshold by 42%, and that samples with SEBS showed better 

electrical responses in dynamic conditions. Despite showing lower compressive strength, 

cementitious sensors fabricated with this novel conductive paint show promise for real time health 

monitoring applications. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1. Piezoelectric Composite Materials 

Due to the growing need to continuously monitor the health of large-scale civil structures, there is 

a growing interest in the self-sensing potential of civil engineering materials. Of particular interest 

are the strain sensing characteristics of smart materials. Of particular interest are strain sensing 

capabilities of smart materials. These sensors are typically fabricated by adding conductive filler 

material into cementitious materials. Filler materials include carbon fibers, carbon nanotubes and 

carbon black. Piezoresistive cement based composites are considerably more robust when 

compared to many other composites and can easily be integrated with large structures. One major 

concern however, with such composites, is the addition of conducting filler considerably alters the 

physical properties of the material. In the case of cementitious materials, the addition of conductive 

filler materials like carbon black in large amounts have been known to make cement weaker [1]. 

While carbon nanotubes have been shown to actually increase the compressive and tensile strength 

of cement composites, their high costs, difficulty of dispersion in water and tendency to form 

agglomerates make them inconvenient to use [2]. Thus the challenging task for researchers is to 

find a filler material of low cost, which does not compromise the properties of the parent matrix.  
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1.2. Working Principle of Smart Materials 

Smart mateials work on the principle that a change in dimensions due to applied strain results in 

a change in electrical properties for the material. 

 

Figure 1: Working principle of smart materials[3]  

 

The electromechanical model selected for the sensors is based off the working principle of RSG’s 

(Resistive Strain Gauges). A resistive strain gauge can measure deformation based on a change in 

its length on the application of external strain.  

 

Figure 2: Resistive strain gauge working principle 
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Assume a square element of side L, with resistance R and area of cross section 𝐴 = 𝑙2 

Its resistance, according to Ohm’s law can be defined as  where  is the resistivity of the material. 

Let the element be subjected to a small axial strain d σ. Taking the logarithm of the equation and assuming 

small changes in length, the derivative of this equation with respect to axial stress σ becomes 

 

This can be re-written as  

  (1) 

and the term 
𝑑𝐿

𝐿
 can be replaced as 𝜖𝑙 as the longitudinal strain 

The axial stress also causes a change in cross section area, A. Taking the derivative of log of  𝐴 = 𝑙2 

gives 

𝑑𝐴

𝐴
= 2

𝑑𝑙

𝑙
 

𝑑𝐴

𝐴
= 2𝜖𝑙 

Where 𝜖𝑡  is the transverse strain on the element. This can be substituted in equation (1) as  

which can be simplified to  

 

 

where −𝜀𝑙=µ 
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The sensitivity of various resistive elements differs based on material and electrical properties. This 

measure of sensitivity is known as the gauge factor of the resistive element defined as the change in 

resistance per unit applied strain or 
𝑑𝑅/𝑅

𝜀
. This is usually represented by λ.  

𝜆 =
𝑑𝑅/𝑅

𝜀
 

 

 

and can be rewritten as  

 

 

 is defined as the change in resistivity with strain or the piezoresistive component of the equation. 

This factor depends on the electrical properties of the material. 

1.3. Percolation Thresholds in Composite Materials 

Hardened cement paste without conducting materials is an insulator. The little 

conductivity seen is due to the conductivity of the cement matrix and the flow of free ions within 

the pore solution. Therefore, the resistivity of plain cement paste is high. On adding conductive 

filler material in low percentages and dispersing it well enough in the cement matrix, there is a 

very slight increase in the conductivity of the cement paste. However, this is not a substantial 

increase, since the isolated filler particles do not form chains or are not close enough to each other 

for charges to tunnel between neighboring conductive particles. However at a certain filler volume, 
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the conductive particles are now close enough to each other so that charges can jump or tunnel 

between adjacent neighbors [4]. This phenomenon is known as tunneling effect. Any slight 

increase in the percentage of filler material leads to a large increase in the conductivity as the 

conducting particles come closer together.  

 

Figure 3: Influence of nearby particles on the conductivity of the material [4] 

 

This volume fraction required to provoke a change in the materials phase from resistive to 

conductive yields the percolation threshold or region. At a certain volume fraction, conductive 

chains begin forming throughout the composite matrix and the composite makes a transition from 

an insulator to a conductor. Further addition of filler materials does not lead to large increases in 

the conductivity of the composite since conductive chains have already been formed. The 

percolation threshold for composite materials depends on many factors. This includes particle size 

[5][6], conductive filler type, mixing procedure speed [7] and dispersion states [8]–[10]. Particle 

size is important in determining the percolation characteristics of the composite. Research has 

shown that smaller particles lead to lowered percolation thresholds because of their ease of forming 

chains as the distance between particles is low when smaller particles are uniformly distributed in 

a composite matrix [5]. However, it is important that these particles form aggregates else there 
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could exist a scenario where small particles are dispersed evenly in a matrix and still not touch 

each other, and this is especially in the case of low structure spherical particles which can have 

percolation thresholds as high as 64% volume [4]. Thus particles that have a higher aspect ratio 

usually have lower percolation thresholds [11][2]. Rod shaped particles are more likely to touch 

each other and form conductive chains at lower volume fractions than spherical particles if they 

have the desired anisotropy in their dispersed state in the composite matrix. Polymer polarity was 

also shown to influence the percolation threshold where a more polar polymer reduces the 

percolation threshold [7], along with mixing times. A higher mixing time was shown to be 

detrimental to the filler-filler bonds in polymer matrixes despite leading to a better dispersion. 

1.4. Conductivity in Smart Materials 

The conductivity mechanisms proposed are mainly two theories, namely percolation theory 

and tunneling effect. Both these theories seek to explain the conduction mechanisms in composite 

smart materials. Percolation theory [12]–[15][16] can effectively explain conductivity mechanisms 

after percolation while tunneling effect theory [4], [15], [17]–[19] is used extensively to explain 

the electrical properties in the vicinity of the percolation threshold. Percolation theory states that 

at a certain volume fraction of filler materials, the formation of conducting chains occurs, and at 

this point, the composite makes a transition from an insulator to a conductor. A simple power law 

based on the statistical percolation equation has been formulated to explain this conductivity. The 

standard form of percolation theory is of the form 

σ = σ0 (Φ – ΦC)t 

where ΦC is the concentration of filler particles at percolation threshold, σ0 is the conductivity of 

the filler material and t is the critical index of conductivity [13]. This equation is valid for 
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concentrations above the percolation threshold only, and is not used to explain conductivity before 

percolation is achieved.  

 

Figure 4: A typical percolation threshold curve for Carbon fibers in cement [20] 

 

Tunnelling effect can be explained as followed. Initially, when the filler content is low, the 

conductivity seen is primarily due to that of the cement matrix. Since cement is more of an 

insulator, composite materials with low filler fractions show low conductivity. As filler material 

is added, the inter particle distances between filler particles decreases. At this particular point, 

electrons can jump or ‘tunnel’ through the narrow gap between two conductive filler particles. 

This phenomenon is known as tunnelling effect. Tunnelling effect needs two primary conditions 

to be satisfied. Firstly, the inter particle distances between two conductive particles should be 

small. Secondly, a high amount of energy needs to be transferred to the electrons so they can jump 
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or tunnel through the gap between conductive particles. A common equation that can be used to 

describe tunnelling is as follows: 

 

j(𝜖)=j0 exp[
−𝜋𝜒𝑤

2
(

𝜖

𝜖0
− 1)2] (1) 

where j(ϵ) is the tunnelling current across a gap with conductivity j0 and with electric field ϵ. w is 

the gap width [4]. 

As the percentage of filler increases, conducting chains are formed. At a certain filler fraction, 

conductive chains are formed between the filler particles and the composite makes a transition 

from an insulator to a conductor. The filler volume that marks this transition is known as the 

percolation threshold for the material. The percolation equation is of the form   (p-pc)
t where pc 

is the percentage of filler material that leads to percolation and t is a constant that determines the 

scaling behavior of the percolation curve in the region of pc [21]. Studies have shown that the size 

and shape of the filler material plays an important role in the conductivity of the composite and 

will change the constants pc and t. Clearly particles with an elongated and irregular shape will have 

lower pc values compared to more spherical particles, which would have higher values of pc and 

thus a higher percolation threshold. Filler materials with a low structure and which are more 

spherical in nature can essentially not touch each other even with high volume fractions of filler.  
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Figure 5: An example of high structure carbon black with narrow enough distances for tunneling [4] 

 

Also the inter particle distance can remain significant for low structure filler materials. This can 

lead to a high value of t. However, high structure filler materials can considerably reduce inter 

particle distances and will hence have lower values of t. The value of t here is found to vary with 

the size of the conducting filler particles. Elongated particles tend to achieve better percolation 

thresholds as chances of contact between adjacent particles and formation of conductive networks 

are higher, however the particles need to have the required anisotropy in order to do so. Initial 

loading of filler materials does not lead to significant increase in conductivity, since there is an 

absence of continuous contact between filler materials at low concentration. However at higher 

concentrations, conductive chains are formed between conductive filler particles leading to a 

transition from an insulator to a conductor. The fraction of filler material required to cause this 

transition is known as the percolation threshold for the composite. At percolation, the flow of 

charge may either be through direct contact or due to tunneling effect. Studies on carbon black 

composites have shown the presence of tunneling effect between spheres of carbon black separated 

in a polymer or epoxy matrix. Since the carbon black particles do not come in contact with each 
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other, charge flow occurs due to the phenomenon of tunneling where electrons jump between the 

narrow insulating gaps between two adjacent spheres of carbon black.  

 

Figure 6: The equivalent circuit for two carbon black particles separated by a small gap [22] 

 

If one were to try and model the above phenomenon when two carbon black particles are extremely 

close to each other, a possible model could be a resistor RC and capacitor CC in parallel, denoting 

the gap between the conductive particles, in series with RA, the resistance of the conducting fibers 

[22]. At low AC frequencies, the value of impedance across this circuit will be relatively large, 

since the capacitive component blocks most of the current and the resistance comes from the large 

resistive component RC. However at higher frequencies, the capacitor CC acts almost like an open 

circuit, hence the current would bypass RA and the corresponding impedance is much lesser than 

in the first case. As the loading of conductive particles is increased, RC decreases and the net 

resistance RA+RC also decreases, thus increasing conductivity. Fabrication of sensors within the 

percolation threshold has been known to give a higher sensitivity to applied strain. [15] explained 

that within the percolation threshold, tunneling effect dominates the conduction mechanism of the 

composite materials and percolation theory governs the samples conductivity after percolation. 

Due to the nature of the tunneling equation, even a minor increase or decrease in the gap with 
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between conductive particles leads to a large change in conductivity in the composite. In the case 

of composites with conductive filler amounts in excess of the percolation threshold, tunneling no 

longer plays a significant effect and percolation theory dominates the conductivity mechanism, 

due to the formation of an infinite number of conducting networks. Thus, applying strain on 

samples with conductive particles well in excess of the percolation threshold will not cause a 

significant change in conductivity since netowrk formation is largely complete in these samples 

and there is very little tunneling taking place. 

1.5. Smart Cementitious Materials 

With the need to actively monitor the health of large-scale civil infrastructure, there is a need to 

better understand the self-sensing capabilities of civil engineering materials. Incorporation of 

conductive particles into cement and concrete can create a smart cementitious composite, with 

strain sensing capabilities. Some of the possible applications of these materials include weigh in 

motion sensors, strain gauges for bridge decks and slabs and weight sensors under roads for traffic 

light operations. Several research endeavors have been made in the field of smart materials in the 

field of structural health monitoring [3], [23]–[25].  

The principles governing the conductivity of these composites are similar to what has been 

discussed above for polymer composites, however cementitious sensors bring upon the added 

complexity of dispersion, compatibility and the effect of microstructure development on the 

electrical and Piezoresistive properties of these composites. The conductive materials commonly 

used with Portland cement are carbon nanotubes [3], [26], [27], carbon fibers [27], [28] and carbon 

black [15], [18]. Also used are materials like Piezoresistive ceramics [29]. There are two 

advantages of adding carbon based conductive particles to cement paste. One of them is the 

increase in the toughness and fracture resistance of cement paste at low concentrations. Fibers 
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especially play an important role in controlling crack growth in cementitious materials. This 

phenomenon is not limited to carbon fibers alone but is also seen in glass fibers.  

 

Figure 7: Reinforcement mechanism of carbon nanotubes in hardened cement paste 

 

Fig 7 shows carbon nanotubes bridging cracks in cement paste. The carbon nanotubes are aligned 

approximately parallel to the cracks and appear to be controlling crack growth by provinding the 

tensile strength required to keep the crack under control. The above study also showed that carbon 

nanotubes increased the hardness of cement paste as compared to control samples [30].  Carbon 

black is also known to increase the compressive strength of cement pastes in low concentrations. 

This is because carbon black densifies the microstructure of cement and hence increases strength 

in low quantities . If the percentage of carbon black is increased too high, it can have the opposite 

effect on strength since it replaces cement by weight and hence reduces the amount of cementitious 

material in the mix. Research has shown that both the compressive as well as the tensile strength 

increases with moderate amounts of carbon black, but reduces with larger amounts of carbon black.  
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Figure 8: Effects of carbon black on the compressive strength (a) and tensile strength (b) of 

cement paste composite [31]

The dispersion of conductive fillers and fibers in cement matrix is important in achieving the right 

material and electrical properties. The electrical properties can be a good measure of the dispersion 

of conductive particles in the cement matrix. A good dispersion will lead to high conductivity 

while a poor dispersion leads to a poor conductivity due to the fact that the conductive particles, 

especially fibers, tend to form agglomerates together in bunches instead of forming continuous 

chains [32]. An illustration of this is shown in Fig 9. 

 

Figure 9: Good and bad dispersion of carbon fibers [26] 



www.manaraa.com

14 

 

 

The idea of dispersion of fibers in cement should be to create continuous chain of fibers 

to allow for conductivity while at the same time allowing the fibers to be uniformly 

dispersed in the cement matrix. Agglomeration of fibers to a certain extent is desirable to 

ensure faster electrical percolation. There are several additives that can increase the degree 

of dispersion of conductive particles in a cement matrix. Silica fume, acrylic dispersions 

and methylcellulose have long been known to increase the dispersion of fibers in cement 

[33]. The improvement in the dispersion comes from the improvement of the interface 

between the conductive particles and cement.  

Cementitious composites differ significantly from polymer composites due to the complex 

structure of hardened cement paste. The microstructure and pore fluid also play an 

important role in the conductivity of the cementitious composite. As the microstructure of 

cement develops, the pore fluid ionic concentration significantly changes, and the 

tortuosity of the pores increases as well. Therefore the microstructure development has a 

significant effect on the final electrical properties of cement. A polymer can also 

significantly alter the microstructure of cement.  

Temperature has also been known to play a significant effect on the electrical properties 

of cement pastes. Increasing temperatures have shown to decrease the activation energy 

needed for the conduction process through cement pastes. Also affected is the pore water 

ionic concentration at increased temperatures which can lead to variations in conductivity 

[34].  
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1.6. Accelerated Percolation in Conductive Polymer Composites 

The main motive behind this study was to accelerate percolation in cementitious sensors 

with the help of a block co-polymer. The copolymer used in the case of this study was 

SEBS (Styrene-co-Ethylene-co-Butylene-co-Styrene). SEBS has chains of styrene, 

ethylene and butylene, which are all immiscible. The aim was to get carbon black particles 

to agglomerate at the interface of these immiscible phases of SEBS, and hence form chains 

at a lower percentage than traditional CB cementitious sensors without the added polymer. 

The aim was to use as little SEBS as possible, as its purpose was solely to carry the CB 

through the cement matrix. Studies have shown success with this method of accelerated 

percolation.  

 

Figure 10: Structure of SEBS 

 

In order to achieve earlier percolation, the carbon black is first dispersed in SEBS. Since 

SEBS is a copolymer with immiscible phases of Styrene, Ethylene and Butylene, the 

carbon black localizes at the boundaries of the two immiscible phases of polymer and hence 

can form chains faster due to selective localization [9][10][35].  It is this reason that SEBS 

and other block polymers are useful in reducing percolation thresholds. 
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Figure 11: Selective localization of carbon black in polymer matrix [9] 

 

Fig 11 shows carbon black localizing on the polypropylene phase of a Polypropylene-

Polystyrene polymer blend. This preferential location of carbon black on the interface of two 

immiscible polymer blends occurs because of the surface tension between the two polymers 

and carbon black. CB particles prefer to be at the interface of the polymers which it has the 

lowest amount of surface tension with. The presence of SEBS also leads to another 

phenomenon called double percolation. Normally, in a composite containing just cement paste 

and conductive particles, the conductive particles will percolate at the concentration where 

enough conducting networks are formed through the cement paste matrix. Due to the presence 

of an insulator, SEBS, the percolation threshold is not only dependent on the amount of 

conductive particles added to the matrix but also the amount of insulating polymer added. 

SEBS being an insulator will block the flow of charges through the cement paste if present in 

large quantities. Thus, there exists an optimal amount of SEBS above which the sample will 

have a high value of electrical resistance. This can be illustrated by assuming a matrix of 

cement and aggregate. As the amount of aggregate (an insulator) increases, it would decrease 
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the conductivity of the cement paste, having exactly the opposite effect of a conductive 

filler.[36]

 

(a) 

 

(b) 

Figure 12: Percolating networks of conductive filler in cement paste and (b) percolating 

networks of insulating aggregate in cement paste. [36] 

 

1.7. Contributions to Current Research 

Cementitious sensors with carbon black are a much cheaper alternative to using fillers like 

carbon nanotubes, despite having lower conductivity and lower structure. A simple 

solution to the above problem would be to accelerate percolation of carbon black in 

hardened cement paste. Using SEBS as a polymer to selectively localize CB is an efficient 

method of achieving the above objective. Introducing SEBS into cement paste would bring 

in challenges in dispersion of conductive paint and hydration of cement paste, which have 

been investigated in this study. A novel method of gauging dispersion of conductive filler 

in cementitious sensors using a current source to heat up the sample and a thermal camera 

to capture the heating pattern was also investigated, and was found to be an efficient 

alternative to SEM(Scanning electron microscopy).  
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CHAPTER 2: REVIEW OF EXISTING LITERATURE 

Much of the existing literature on conductive composites as piezoresistive materials focuses on 

polymer composites. These studies include the electrical properties, studies on the percolation 

thresholds of polymer composites and their strain sensing properties. One interesting study focused 

on a stretchable carbon nanotube skin for human motion detection [37]. The authors employed thin 

SWCNT films cast on thin substrates which could be attached on clothing. The films of SWCNT 

were subjected to single and repeated loading and their response to strain was recorded. The 

authors reported that strain up to 280% could be measured using these thin films which was more 

than a conventional strain gauge could measure.  

 

Figure 13: Response of SWCNT films to static and dynamic loading [37] 
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In the civil engineering domain, research on conductive polymer composites was done by 

Laflamme et al. [25] who developed a soft elastomeric capacitor capable of detecting and 

localizing damage on surfaces. This sensor was tested on a wind turbine blade and data suggested 

that the soft elastomeric capacitor had the potential to outperform traditional strain gauges as it 

provided additive strain measurements without any directional inputs.  

 

Figure 14: Soft elastomeric capacitor with schematic [25] 

 

 

 

Figure 15: Applied strain v/s measured stain for the SEC [25] 
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As seen from Fig 15, the fit from these sensors was linear and matched the applied strain. Wu et 

al. [23] attempted to reconstruct surface strain using SEC’s. An algorithm was used to decompose 

the additive in plane strain measurements from the SEC’s into their principle components and a 

LSE(least square estimator) reduces the error between the assumed model and the SEC signals. 

 

 

Figure 16: Test setup for strain reconstruction (left) and a schematic of the plate used (right) [23] 

 

The electrical properties of carbon black-polymer composites were studied in depth by [4] who 

developed a model to determine the electrical properties of polymer composites with carbon black. 

It was discovered that when particles are within a close enough proximity, charges could tunnel 

through the gaps between conductive particles. Also discussed was the effect of the shape of the 

particles on the percolation threshold, another factor that is increasingly studied for the 

understanding of the conductive mechanisms in composites. A study by [5] found that smaller 

particles should lead to lowered percolation  thresholds due to the fact that smaller particles can 

come into contact and form aggregates of chains more readily than larger particles. The authors 
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used a simple cubic lattice arrangement to show that the inter-particle distance was directly 

proportional to the particle size given below:  

 

Where D is the diameter of the particles and δ is the interparticle gap. 

A lot of research has been done with composites containing carbon nanotubes, due to their high 

aspect ratio and ability to form agglomerates and chains. Carbon nanotubes have been shown to 

achieve low percolation thresholds with epoxy [2]. The agglomeration of carbon nanotubes during 

the fabrication process was discussed, along with thermal effects on the arrangement of fibers. 

 

Figure 17: Percolation thresolds achieved with MWCNT’s [2] 

 

Low percolation thresholds of 0.005% were achieved using this method as seen from Fig 17. 

Carbon nanotubes were compared to carbon black [38] for their rheological and electrical 

properties, and it was shown that carbon nanotubes did lead to lowered percolation thresholds 
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when compared to carbon black. This could possibly be because of the shape and aspect ratio of 

carbon nanotubes as compared to carbon black. 

The study of the self-sensing capabilities of civil engineering materials is a relatively unexplored 

field, but has seen recent growing interest. Most of the literature deals with conductive fibers and 

fillers incorporated into cement concrete [18], [27], [39]–[41], while there is also studies focused 

on the self-sensing characteristics of asphalt composites [42]–[46].  

D’Alessandro et al. [3] modelled a cementitious sensor fabricated with MWCNT’s and observed 

its response to dynamic loading. The cementitious sensors were mounted on a large beam and a 

dynamic load was applied. The strain sensing characteristics of the sensors were studied and it was 

found that the sensors had static and dynamic strain sensing capabilities, as well as being able to 

capture vibration signatures, thus proving to be useful for a number of civil engineering 

applications. Azhari et al. [27] investigated the strain sensing ability of carbon fibers and carbon 

nanotubes when incorporated into cement. Experiments over cyclic loading indicated that the 

changes in resistivity mimic both the loading and applied strain. Other studies showed that carbon 

fibers are more effective at sensing strain than steel fibers which were smaller in diameter (15µm 

v/s 8µm) and that smaller fibers were almost ineffective in creating piezoresistive cementitious 

composites [41]. Han et al. [47]  studied the repeatibility of CB and CF based cementitious sensors 

and found the results to be repeatable and linearly variable with applied strain. Both static and 

cyclic loading cases were studied and the authors concluded that the sensors were effective in 

detecting strain upto 476 μɛ and loadings up to 8MPa. 
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Figure 18: Change in resistivity for a static (a) and dynamic (b) case [47] 

 

Li et al. [15] showed that samples with conductive filler percentage in the percolation threshold 

showed highest sensitivity to applied strain, as compared to two samples which had conductive 

filler percentages greater than the percolation threshold. The mechanism of conductivity, which 

was stated to be tunneling effect for samples in the percolation threshold, and percolation theory, 

which was said to dominate conductivity after percolation, were stated as the reasons for the 

difference in sensitivity. 

Studies with carbon black and cement composites and their use shielding against electromagnetic 

waves has shown that carbon black when used in large quantities decreases the compressive 

strength of cement paste.  
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Figure 19: Compressive strength v/s CB loading in weight % [48] 

 

Xiao et al. [48] claimed that the piezoresistivity of carbon fibers differed from that of carbon black 

filled cement composites, in the sense that CB filled cementitious sensors do not exhibit fiber pull 

out and reorientation of fibers under applied loading. Instead, they proposed a model that related 

the deformation applied on a cementitious composite to the internal tunnelling gap between carbon 

black particles that were dispersed in the cement matrix. An important observation by [49] showed 

that the initial resistance of cement paste with carbon black was not constant but increased with 

time and water content, attributed to the polarization effect. These results considered the presence 

of moisture affecting the initial resistance over time and gave recommendations on sealing the 

cementitious material from moisture ingress.  

However, studies have also shown that medium to low percentage loadings of carbon black 

actually increase the compressive strength of cement paste and concretes. One study showed that 

carbon black when added to concrete initially increases the compressive strength of the concrete 
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mix, due to the densification of the interfacial transition zone, but further increase in the content 

of carbon black leads to a decrease in the compressive strength due to excess replacement of 

cementitious mateirals [50].  

 

Figure 20: Effect of carbon black on the compressive strength of PCC [50] 

 

This was also seen in a composite of plain portland cement paste and carbon black of varying 

proportions, where carbon black-cement composites had a higher strength at low concentrations 

of carbon black but this strength decreased as the percentage of carbon black was increased [31]. 

Another study investigated the effects of carbon black on the interfacial transition zone between 

cement and steel reinforcement. The author compared these effects to that of silica fume and 

noticed that samples containing carbon black proved to be less resistent to crack propagation and 

had higher values of strain at maximum compressive stress. The study also showed that cement 

paste with carbon black contained more voids than a comparable percentage of silica fume and 

the same water to cement ratio [1]. The author cited the possible interaction between carbon 

black and superplasticizer to the formation of voids in the hardened cement paste microstructure. 
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The use of two immiscible polymer phases has long been viewed as an efficient method of reducing 

the percolation threshold of conductive composites. In a Polypropylene-Polystyrene two phase 

polymer, CB was seen to have affinity for the Polystyrene(PS) phase over the Polypropyle 

phase(PP) [51]. The authors also witnessed the selective localization of carbon black on 

PBD(Polybutadiene) phases over PS and PP.  

 

Figure 21: Selective localization of CB on PBD phase of an SBS copolymer [51] 

 

The authors claimed that this agglomeration of CB helped form conductive chains of CB at much 

lower percolation thresholds, and reported a 40% drop in the percolation threshold on addition of 

5% of SBS to a PP/PS polymer.  
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CHAPTER 3: MATERIALS AND FABRICAION OF SENSORS 

3.1. Materials Used 

SEBS type Mediprene was obtained from VTC Elastoteknik AB, Sweden (density = 930 kg/m3). 

It is a petroleum-based block copolymer widely used for medical applications, because of its 

purity, softness, elasticity, and strength.14 CB type Printex XE-2B (2% ash content and 500 ppm 

sieve residue 45 m) was acquired from Orion Engineered Carbons (Kingswood, TX). It is 

characterized by a high structure (minimum oil absorption 380 cc/100g), which facilitates higher 

conductivity. The carbon black received was further processed by ball milling it to make finer 

particles, with the intent of improving dispersion.15 Copper meshes to form the electrodes were 

acquired from McMaster-Carr (Elmhurst, IL). Portland cement type I/II was locally purchased 

from Ash Grove Cement Company.  

3.1.1. Ball milling of carbon black 

Carbon black was ball milled to break down agglomerated particles and hence decrease particle 

size. This was done with the intention of improving the dispersion of carbon black in the cement 

and polymer matrix. 

 

 

Figure 22: Ball mill representation 
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As explained in the previous chapter, finer filler materials can aid percolation due to the fact that 

they agglomerate together and have lower inter particle spacing. The carbon black received from 

Orion Engineered Carbons (Kingswood, TX) was added to the ball mill and milled for 24 hours 

until fine. It is estimated that 15 hours of ball milling reduced the particle size of CB from an 

agglomerations of 0.9mm to as small as 47 microns.  

 

 

Figure 23: Original CB 
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Figure 24: Ball milled CB after 15 hours with extremely fine particles 

3.2. Fabrication of Sensors 

3.2.1. Fabrication of sensors with carbon black only  

One set of sensors were fabricated by using only carbon black as a filler material. The desired 

amounts of carbon black were weighed and mixed in a blender with the required amount of water 

needed for a 0.45 water to cement ratio plus an added amount to take into account the absorption 

of water by carbon black. This mixture was mixed at high shear for 5 minutes in a blender. Cement 

was then added to this suspension of carbon black and cement in a Hobart mixer. This mix was 

stirred for 2 minutes at speed 1. Samples were then cast in molds of size 2”x2” with copper 

electrodes of size stuck to the sides of the molds using pieces of caulk rope. The samples were 

allowed to cure overnight before being demoulded and allowed to cure in a curing room at 100% 

relative humidity at 70◦ C for 7 days. The samples were then allowed to air dry for 4 days before 

resistivity readings were recorded.  
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Figure 25: Representation of the fabrication procedure for CB only samples 

3.2.2. Fabrication of sensors with carbon black and SEBS 

A copolymer SEBS was used in the fabrication of the next batch of sensors with the aim of 

accelerating the percolation of CB networks within the cement matrix. SEBS polymer obtained in 

granular form was first dissolved in toluene in the ratio of 60g of SEBS per 500ml of toluene. CB 

was then added to this solution in the desired proportions before the mixture was sonicated using 

a sonic tip for 5 minutes. The proportion of CB to SEBS was determined by the amount of CB to 

be added. Small amounts of CB required 15ml of SEBS to be added while larger volumes of CB 

needed 30ml of SEBS to be added. Volume fractions in between used 20ml of SEBS solution for 

every 2” cubic sample. The resulting SEBS-CB conductive paint is insoluble in water, hence needs 
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a surfactant in order for it to disperse properly in the cement paste. For the fabrication of CBSCS 

sensors, cement and water are first pre-mixed in the Hobart mixer for 1 minute before the 

conductive paint and 0.1g of Sodium Lauryl sulphate per 8 cubic inch sample was added to the 

slurry. This resultant mixture was mixed for 2 minutes on speed 1 of the Hobart mixer. The samples 

were then poured into molds of 8 cubic inch capacity and were properly compacted to ensure no 

air voids were present. The samples were covered with a damp cloth and allowed to cure overnight 

before being demoulded and placed in a curing room at 100% relative humidity and 72 F for 48 

hours. The samples were then allowed to air cure to develop polymer microstructure and let water 

dry out before being tested. 

 

Figure 26: Description of the SEBS Sensor fabrication process 
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3.3. Mix Proportions for CB and CB with SEBS Sensors 

Given below in Table 1 and 2 are the mix proportions of CB only and CB with SEBS sensors 

Table 1: CB only samples mix proportions 

# of samples water (g) CB (g) cement (g) plasticizer (ml) w/c %CB(vol) 

3 293 0.00 651 6 0.45 0.00 

3 292 1.65 649 6 0.45 0.18 

3 291 3.30 647 6 0.45 0.36 

3 290 5.00 645 6 0.45 0.54 

3 289 6.65 643 6 0.45 0.71 

3 286 9 630 6 0.45 0.96 

3 286 12 630 6 0.45 1.25 

3 286 15 630 6 0.45 1.60 

 

Table 2: CB with SEBS mix proportions 

# of samples Water(g) CB(g) SEBS volume(ml) Cement(g) w/c % CB 

3 261 0.00 15 585.90 0.45 0.00 

3 261 1.65 15 585.90 0.45 0.18 

3 261 3.30 15 585.90 0.45 0.36 

3 261 5.00 15 585.90 0.45 0.54 

3 261 6.65 15 585.90 0.45 0.71 

3 234 9.00 30 519.75 0.45 0.96 
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CHAPTER 4: TESTING AND EQUIPMENT 

4.1. Impedance Measurements 

Impedance was measured using an Agilent 4232B LCR meter. All readings for 

Impedance were measured using a bias of 1000mV at a frequency of 100 KHz. The 

samples were tested after 7 days of air drying to allow most of the water to evaporate 

and in the cases of the CB with SEBS samples, the polymer to air cure and its internal 

microstructure to form.  

4.1.1. Impedance v/s strain measurements 

Impedance v/s strain measurements were recorded using the Agilent 4323B LCR meter 

and compressive strain was applied on the sample using an Instron machine with a 

50KN capacity. The tests were strain controlled and the strain was applied in increments 

of 20 micro-strain. Data was logged onto a laptop using a USB interface from National 

Instruments.  

 

Figure 27: Instron machine used to apply a strain controlled loading on the samples 
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Figure 28: Data acquisition system and laptop used to record the readings 

 

4.2. Measuring the quality of dispersion in the cementitious sensors 

In order to have an effective piezoelectric material, the filler material should be uniformly 

dispersed in the cement matrix to create a homogeneous composite. A good dispersion 

guarantees a good response to change in strain and reversibility in resistivity. While 

scanning electron microscopy (SEM) is a common method to determine the level of 

dispersion in composites, the authors have employed thermography and thermal imaging 

as an effective alternative, due to the fact that heating will be observed primarily where 

carbon black particles are situated. Thermal images have the advantage of being able to 

show a three dimensional view of heating patterns unlike in SEM where only one cross 

section of the sample can be viewed at any point in time. 
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The setup involves the cementitious sensors connected to a AC current source stepped 

down to 60V and placed in an enclosed space, while a thermal camera captures thermal 

images of the sample as the voltage is applied across the terminals. About one image per 

second is recorded.  

 

 

Figure 29: 1.6% CB only before heating 

 

Figure 30: 1.6% CB only after 3 minutes of heating 

 

Figures 29 and 30 show a 1.6% CB only cementitious sensor before and after the 60V potential 

was applied across its electrodes. The heating can be seen by the brighter areas in the second photo. 

The heating pattern appeared uniform throughout the height of the sample and thus a good 
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dispersion is achieved for the 1.6% CB only sample. Since the amount of carbon black in the 

sample was high, it was also assumed that samples with lower CB % would also show similar 

dispersion since the mixing process was similar. 

 

Figure 31: 0.71% CB with SEBS before heating 

 

Figure 32: 0.71% CB with SEBS after 3 minutes of heating 

 

Fig 31 and 32 show dispersion of a 0.71% CB with SEBS sensor, and as before, the test shows 

that a good dispersion was achieved
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1. Percolation Plots 

5.1.1. CB only sensors 

 

Figure 33: CB only percolation 

 

Figure 33 shows the percolation of CB only specimens with increasing CB filler 

percentage. As expected, at low filler concentrations, change in resistivity is minimal 

and decreases sharply as volume of carbon black added increases. The percolation 

threshold for the CB only samples is between 0.71% and 1.25% CB% by volume.  
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5.1.2. CB with SEBS sensors 

 

Figure 34: CB-SEBS percolation 

 

The samples containing CB pre-dispersed in SEBS show a similar shape of the 

percolation curve, however the graph shows that percolation occurs between 0.36% 

and 0.71%. This shows that SEBS can be used to accelerate percolation as explained 

in the previous chapters. 
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Figure 35: Combined percolation curves of CB only and CB with SEBS 

 

5.2. Effect of SEBS Loading on the Electrical Signal of Cementitious Sensors 

Samples were also cast with a constant loading of CB while varying the amount of SEBS 

to determine the effect of polymer on the conductivity of the cementitious sensors. 0.54% 

samples of CB with varying loadings of SEBS were prepared and their electrical impedance 

was recorded. 
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Figure 36: Resistivity v/s SEBS content for constant CB at 0.54% loading 

 

Fig 36 shows that SEBS increases the resistivity of the cementitious sensors as expected, 

since polymers are good insulators. As loading is increased, the impedance increases as 

well. The optimum amount of SEBS was chosen to be 9% for samples under 0.71% CB 

loading. 0.96% samples were loaded with 30% SEBS to help facilitate dispersion. The 

sample with CB only was not yet conductive despite low impedance, being situated before 

percolation as seen from the plot of CB content v/s resistivity for CB only samples in fig 

36. The resistivity of 0.54% CB only samples becomes steady at loadings above 18%. 
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5.3. Electrical Response to Applied Loading 

The main purpose of the study was to fabricate sensors that percolate faster and prove 

to be effective at measuring the change in electrical properties of the composite on the 

application of external strain.  

5.3.1. Impedance v/s strain 

 

 

Figure 37: Percent change in Impedance v/s strain for 0.96% CB only samples 
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Figure 38: Percentage change in Impedance v/s strain for 0.54% CB with SEBS samples 

 

Figure 39: Percentage change in strain for 0.71 
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CB only samples showed an almost linear and reversible change in Impedance when 

external strain was applied. The hysterisis was minimum in the case of 0.96% and was 

slight in the case of 1.25%. Samples with SEBS showed more nonlinearity and also 

more hysterisis than the CB only samples. 

 

Figure 40: Strain v/s Impedance for CB only samples before, within and after the percolation 

threshold 
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Figure 41: Strain v/s Impedance for CB with SEBS samples before, within and after the 

percolation threshold 

 

Table 3: Gauge factors of CB and CB with SEBS sensors 

Loading SEBS-CB 

dR/R /e 

CB 

dR/R /e 

0.18% 25.8 N/A 

0.36% 30.8 N/A 

0.54% 38.0 47.3 

0.71% 17.7 82.5 

0.96% N/A 178 

1.60% N/A 17.0 
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From both the graphs it can be seen that the samples that are situated in the percolation 

threshold are generally more sensitive to strain than those which are situated outside 

the percolation threshold, both before and after percolation. It was seen that samples 

before percolation did not show a very linear response to applied strain while the 

response to strain was generally better in those samples which were situated both in the 

percolation threshold and after the percolation threshold. As explained in chapter 2, 

samples that are situated in the percolation threshold are usually more sensitive to strain 

simply because the conductive particles have only begun forming chains, so any applied 

strain reduces the inter particle width. From the tunneling equation we see that the 

relationship between the conductivity of the composite and the interparticle width is an 

exponential one, thus a decrease in the particle distance leads to a large increase in the 

conductivity. In the case of the CB with SEBS samples, nonlinearity was seen more in 

the 0.54% sample which was situated in the percolation threshold than the 0.71% 

sample, although both samples showed a degree of nonlinearity greater than the CB 

only samples. Samples with CB and SEBS showed a slightly larger hysterisis and were 

significantly less sensitive than the CB only samples. The hysterisis is possibly due to 

the fact that the polymer needs to relax completely before readings would be perfectly 

linear.  

5.4. Cyclic Loading with Constant Strain 

Repeated cyclic loading tests on the samples showed that the CB with SEBS samples 

gave linear and reversible responses after about two cycles, and even the samples with 

CB only needed one cycle in order to show fully reversible and linear changes in 

impedance with strain. The plots for strain v/s impedance are shown below. 
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Figure 42: Impedance v/s time for 0.54% CB with SEBS  

 

 

Figure 43: Percent change in Impedance v/s time for 0.71% CB with SEBS 
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Figure 44: Percent change in impedance v/s time for 0.96% CB only 

 

Figure 45: Percent change in impedance v/s time for 1.6% CB only 
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The repeated cyclic loading results show that both the CB only and CB with SEBS 

samples produce repeatable results. The samples of CB with SEBS need one cycle for 

the polymer to fully relax before the results can be repeatable. In some cases, the 

Impedance increases to a positive percentage fraction of the original value due to the 

elastic nature of the polymer while it relaxes, most prominently seen in figure 43 with 

0.71% CB with SEBS, causing the Impedance to increase more sharply. Once fully 

relaxed, the samples show good repeatability.  

5.5. Cyclic Loading with Varying Strains: 

When the samples were loaded with varying strains, the samples with CB only did not 

respond as well to changing strains as the samples with SEBS. The same samples which 

were subjected to a 400µε load were now subjected to loading from 200µε to 400 µε 

after 5 cycles. This was done to determine the effect of increasing the loading on both 

the CB only samples and the SEBS samples.  

 

Figure 46: Impedance v/s Time for 0.96% CB only sample 
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Figure 47: Change in impedance and strain v/s time for 0.54% CB with 9% SEBS 

 

From the Impedance v/s time data for the CB only samples, it can be seen that in the 

case of the 0.96% CB only samples, the Impdeance values showed good repeatability 

for values upto 200µε but showed an irreversible decrease for 0.96% CB only. The data 

for 0.54% CB with SEBS showed that the changes in impedance were proportional to 

the applied strain throughout the loading cycles. 
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Figure 48: Time v/s Impedance for 0.54% CB with SEBS sensors with 9%, 18% and 30% 

SEBS respectively. 

 

To determine the effect that the amount of SEBS had on the repeatability and hysterisis 

of the sensors, three samples with varying amount of SEBS were tested under repeated 

cyclic loading for 10 cycles. The strain was increased from 200µε to 400 µε after 5 

cycles. The sample with 9% SEBS was the most sensitive, which agrees with the results 

from the CB only samples, that show that CB only samples are more sensitive in 

general. As the amount of SEBS is increased, the sensitivity gradually decreases. The 

sample with 18% SEBS sees the least overall change in the final value of Impedance, 

but if the initial cycle is ignored because the polymer must be allowed to be pre strained, 

the 9% SEBS sample has the best repeatability. In all cases however, the presense of 

SEBS caused the impedance to drop when no strain was being applied on the samples, 

This can be seen from the gradual decrease in the preaks for all 3 samples. The samples 
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were all fatigued and preloaded to 300µε before testing in order to simulate real loading 

conditions and also to ensure the sample would be at full strength for the testing. 

Another reason for the increase or decrease in the impedance with cycles is because 

only two probes were used in sample casting. Two probe testing was simpler in the case 

of cementitious sensors but did not take into account the potential damage of the 

electrodes while loading and unloading which could cause a permanent chance in the 

impedance readings. 4 probe methods are usually employed where the contact 

resistance is low and resistance of the cables are comparable to the resistance of the 

sample to be measured.  

5.6. Impedance v/s Temperature 

The variation of Impedance of the cementitious sensors with temperature is extremely 

important in the application of these cementitious composites for the real time health 

monitoring of large scale infrastructure.  

 

Figure 49: Change in Impedance with time for varying temperature 

(Plain cement paste) 
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Figure 50: Percent change in Impedance with time for varying temperature (Cement paste 

with SEBS) 

 

The plots in Fig 45 and Fig 46 show that the plot of temperature with time is almost a mirror 

image of the impedance variation of impedance with time for the sample with cement paste 

and SEBS only, except for a few peaks in the impedance v/s time plot. The decrease in 

resistivity is due to a decrease in activation energy for the conductivity process and change 

in the pore water fluid ionic concentration. The data from the plain cement samples show 

that the final impedance value is much more than the initial value. The final value for SEBS 

is about the same as the initial value with a much smaller permanent change.  

5.7. Compressive Strength 

To determine the effects of SEBS and CB on the compressive strength and hence the 

hydration of cement particles, 2”x2” cubes with CB only and CB with SEBS were prepared 

for testing both short term 7 day strength and long term 28 day strength. The samples were 

allowed to cure for 7 or 28 days in 100% relative humidity according to ASTM C39. The 
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samples were then crushed using a compression-testing machine. The compressive strength 

as well as the peak load before failure for the samples was recorded 

The compressive strength of the samples are listed in the table below: 

Table 4: Compressive strength of Samples with Cement only 

CB % SEBS% Peak load 

(lbs) 

Peak Strength 

(psi) 

Mean strength 

(psi) 

  27590 6898  

0% 0% 27230 6807 6904.33 

  28032 7008  

  22930 5732.5  

0.54% 0% 30920 7730 7369 

  31260 7815  

  7030 1757.5  

0.71% 0% 24420 6105 6162.5 

  24880 6220  
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Table 5: Compressive strength of Cement samples with SEBS 

CB% SEBS % Peak Load Peak Strength Mean Strength 

  22760 5690  

0.54% 9% 18960 4740 5406.25 

  20490 5122.5  

  21570 5392.5  

0.71% 9% 21190 5297.5 5345 

  12680 3170  

 

As can be seen from Table 2, cementitious sensors with carbon black only had higher strengths 

but had much more damage on breaking as compared to the samples with SEBS and the control 

samples with plain cement paste, as observed in Figures 50 and 51. A reason for the difference 

in failure could be because the SEBS controls cracking in the cement paste despite not 

providing considerable compressive strength. SEBS has a specific gravity of 0.89 and hence a 

9% replacement of cementitious material by volume results in a drop in compressive strength, 

since SEBS is not cementitious in nature. Carbon black is seen to actually increase the 

compressive strength of cement paste for low percentages (0.54%) while higher fractions of 

Carbon black show a decrease in compressive strength.  
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Figure 51: Broken specimen of CB only showing all sides broken 

 

 

Figure 52: Broken specimens of CB with SEBS showing much less damage at failure 
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Figure 53: Strength v/s CB content for CB samples with SEBS 

 

Figures 52 and 53 show the decrease in strength with the addition of SEBS to cement. The 

observed drop in compressive strength when compared to CB only samples can be traced to 

the SEBS solution used in the conductive paint. Toluene is used to dissolve SEBS to make the 

polymer solution, and since toluene is highly volatile, evaporation of toluene as the samples 

cure causes voids to form in the cement paste on hardening. Also likely to cause a drop in 

strength is the replacement of cement with conductive paint, which is much more in the case 

of samples with CB and SEBS. Polymer solution could also coat cement grains and inhibit 

hydration. The effects of SEBS and toluene on the hydration of cement paste needs to be 

studied further, which would surely provide solutions to tackle the observed loss in strength. 
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Figure 54: 28 days compressive strength 

 

 

Figure 55: 7 days v/s 28 days compressive strength 
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Table 6: Strength gain from 7 to 28 days 

Strength gain 

CB SEBS 7 day avg 28 day avg Increase %increase 

(% vol) (% vol) (psi) (psi) (psi) (%) 

0 0 6852.50 7958.83 1106.33 16.14 

0.54 0 7772.50 9170.83 1398.33 17.99 

0.54 9 5406.25 6516.67 1110.42 20.54 

0.71 0 6466.25 8000.83 1534.58 23.73 

0.71 9 5345.00 5837.50 492.50 9.21 

 

Table 6 shows the strength gain from 7 to 28 days shows an almost even increase in strength, 

almost similar to the control sample, from 7 days to 28 days. However 0.71% CB with 9% 

SEBS shows the least increase in strength. The 0.71% CB only shows the greatest increase in 

strength.  
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CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE 

This study has examined the possibility of reducing the percolation threshold of cementitious 

sensing materials by employing a co-polymer SEBS to disperse CB within the cement matrix. 

The results obtained in the study have shown that SEBS can successfully reduce the percolation 

threshold of cementitious sensing materials with CB due to the preferential affinity of CB to 

one of the immiscible phases of SEBS, enabling the formation of conductive chains faster. The 

strain sensing characteristics of cementitious materials with CB and SEBS were also studied. 

The following conclusions were made from the study: 

 Specimens containing CB only had a much higher percolation threshold than those with 

CB and SEBS. This showed that the polymer was successful in reducing the percolation 

threshold in cementitious composites 

 Specimens with SEBS were less sensitive to strain than CB only samples. This was also 

observed when increasing percentages of SEBS were added to specimens. SEBS being 

an insulator also increased the electrical impedance of the material.  

 Specimens with CB and SEBS performed better under repeated loading and better 

matched changes in strain during cyclic loading.  

 Specimens with CB and SEBS had a lower compressive stress as compared to that with 

CB only. This was possibly attributed to the fact that SEBS replaces a large quantity of 

cement for a similar volume and hence the reduction of cementitious material causes a 

reduction of compressive strength. 

 CB only specimens showed much more damage at failure than SEBS possibly because 

the polymer prevents the propagation of cracks. 
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 The effect of temperature on the electrical impedance of samples was studied and it was 

seen that increased temperatures decreased the electrical impedance considerably, 

possibly due to the change in pore water ionic concentration. 

Future work also needs to be done to observe the chance in electrical signal in different 

moisture conditions and for long-term loadings. These sensors have a good potential to be 

weigh in motion sensors or even replace conventional strain gauges in large-scale 

infrastructure. Therefore, a lot more work has to be done as far as the long-term usability 

of these sensors in detecting strain and damage in structures.
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